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upstream of this region. Some useful gimilarity laws are
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GCondensation Shocks

C. J. Shih and P, A, Blythe
venter Lor the Application of Mathematics
Lehigh University

Abstract

Supersonic noczle flows of a condensible vapor are
considered in the high activation limit for homogeneous nuclea-
tion. Conditions under which the final collapsc of the super-
saturated state is described by a condensation shock are
determined. The analysis leads to a natural definition for
the shock position. it is shown that the shock zone is asso-
ciated with droplet growth. Droplet production occurs upstream
of this region. Some useful similarity laws are obtained for
the production zone.
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1. Introduction

In two recent pnpers't non-equilibrium nozzle flows of a
condensible vapor werc considered in the limit when the collapse
of the supersaturated state occurred close to the condensaticn
point X, . This paper is concerned with flows for which the
collapse, characterized by some point X, » occurs at a finite
Jistunce downstream of x . The discussion is restricted to

homegeneous nucleation,

For this process the rate equation contains two basic
parameters, a droplet growth rate A and an activation factor
K . 1t appears (Shih, 1972) that A>>1 over a broad range of
reservoir conditions., The limit  A=+w was discussed in I and II
for flows in which X, X, = of1) . This latter requirement can
be viewed as a restriction on the magnitude of K ; at fixed
values of A, X, =X decreases as A - increases. In fact,
available data indicates that K<<l in many practical situations
(Shih, 1972) and the presen* »aper is concerned with the double
Limit Ase , K+0 such that x -x_ = 0(1) . |
Of particular importance in this analysis 1is the behavior
L of the activation function B[pv,T) when D, is the vapor
e pressure and T the temperature (§2). The minimum value of B
corresponds to maximum droplet production. For nozzle flows,
the variation of B is usually of the type shown in figure 1.
Immediately'dOWnstream of the condensation poi- * the initial be-
havior of B is governed by the frozen solution with the conden-
sate mass fraction g=0 . It was found in 1| and II that the
subsequent growth of g 1leads to u strong conpling between the
rate and flow equations. This coupling induces a local minimum
in B as shown in figure 1. The collapse point X corresponds

AT

k
, closely with this turning point. It is important to note that
L : the frozen function b, 4lso has a turning point, at x=x_. =,

which is independent of the parameters A and K . For some of

*Petty, Blythe and Shih (1972), Blythe and Shih (1973), referred
to respectively as I and II.

- Preceding page hiank
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the analysis it is necessary to distinguish between flows for
which x <x ., and flows for which x ~x , . (It is assumed
throughout, consistent with standard results for B(pv,T) » that

X "X, ® 0(1) .)

min
Initially, g is exponentially small and its growth can
be computed using the frozen solution. This calculation leads
to 8 simple criterion for the determination of Xy (§3). Qual-
itatively, Xy is strictly associated with drvyint urodugtion.
Although the production rate has a local maximum in this region,
the mass sraction g 1is still small (0(K)). Within this zone
the equations reduce to a unique similarity form (§4) which is

identical with the corresponding result obtained in II.

Downstream of X, droplet production is exponentially
small and the process is dominated by droplet growth (§5). For
S it is found that the growth region, which lies close to
X, is governed by a condensation shock of rinite strength (§6),
in contrast with the limit discussed in I1 where the collapse was

2
governed by a weak shock. The width of the shock zone is O(K’ﬁ)

A discussion of the shock relations is given in §6., In
standard treatments it is conventional to replace the full equa-
tion of state by the perfect gas law (see e.g. Wegener and Mack,
1958). This leads to a considerable simplification in the
analysis since the shock relations are then equivalent to those
governing the one-dimensional flow of a perfect gas with heat
addition (Shapiro, 1958). It is shown in §6 that the terms
neglected in the classical approach may be important at high
Mach numbers.

For these flows it has often been shown that there is a
critical heat addition, or condensation fraction, beyond which
thé flow will choke. The determination of this cr'tical amount
is somewhat more complex for the full shock relations discussed
here (§6).

An additional constraint on the mass fraction is alsc
defined by the rate equation. It is shown in §§5 and 6, neg-




lecting terms O(Kaa) , that the limiting value within the shock
zone is governed by saturation conditions. Consequently, the

flow will choke only if the limiting saturation temperaturc is
greater than the choking temperature. No particular attention
appeavs to have been given in the literature to the determination of
conditions under which saturation will precede choking. A precise
description of this boundary requires detailed numericual calcula-
tions., However, it is shown in appendix 1 that choking will not
~occur if the flow at the condensation point is supersonic (Mc>1) .

As  x X the previous remarks require modification.

k in
The droplet production zone now depends on a single parameter
v . Numerical solutions of this equation are given in §8. Pro-
vided that K 1is not too small this zone is still terminated by

a condensation shock, though the shock width is now O(K’%)

For still smaller values of K (§9) droplet production
is governed completely by the frozen solution. Although the
rate equation does simplify, the growth zone is not, in general,
described by a condensation shock.

[t has been pointed out (Wegener and Mack, 1958) that the
classical shock analysis does not predict either the shock
position or the end state immediately downstream of the shock,-
Nor does it provide information on the conditions under which
the collapse of the supersaturated state is adequately described
by the shock relations. In the present limit, the analysis not only
yields a criterion for the shock position but also outlines
the conditions under which such shocks occur. As noted above,
if the collapse is governed by a condensation shock, the down-
stream limit of the shock zone corresponds to a saturated state
for MC>1
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2. The conservation laws and the rate equation

For the convenicnce of the reader the relevant results are
summarized below. These relations were reviewed in I,82 where
the formulation given in Wegener and Mack (1958) was closely
followed. Under the assumpticns discussed in I, the equations
governing the conservation of mass, momentum and energy for a
mixture of a condensible vapor and an inert carrier gas are

PUA = m o (2.1)
du _ _ d
| pu I = a% (2.2)
and
c. T+ 1 ut - g = c¢c_ + La = o T . (2.3)
P, Z P, 2 Ye p, ©

All variables arc normalized with respect to conditions at the
condensation point.+ p 1is the density of the mixture, u 1is
the gas speed, p 1is the total pressure, T 1is the temperature,
g 1is a weighted mass fractio. (I, 2.12), <y is the specific
heat at constant pressure for the mixture, m °is the mass flow
rate and A(x) 1is the local cross-sectional area at any station
X . The suffix ¢ corresponds to conditions at the condensation

point x=1 where p =p =T =1 and g=0

If p, denotes the partial pressure of the vapor and Py

the partial pressure of the carrier gas
H U
= - 2 2
P (1 wo)uv p; * I, w P, (2.4)

where Mo and u, are the molecular weights of the mixture
and the vapor respectively. W, is the reservoir specific

humidity.

point is defined by the inlersection of the initinl cor-—

ot ren fo ot ope ane the co-pxistence line,




In the present notation, the equation of state for the
mixture is

p = p(1-H'g)T (2.5)

where H 1is a non-dimensional latent heat. (This factor arises
in (2.5) due to the normalized form ot g , see (2.5) and
I, (2.123.)

The rate equation for homogeneous nucleation can be

written
. X
g = 3 M, 3a00)4e (2.6)
1
where
e 3
M(x,&) = [[EF(SJ[TD(S)'T(S)]dS} (2.7)

is the mass at x of a droplet fermed at £ and J(x) 1is the
rate of formation of droplets of critical size., It is assumed
here that the growth function F is independent of droplct size
with

F = Fp ,T,g) . (2.8)

At the condensation point F = F(1,1,0) =1 . In (2.7) TD is
the droplet temperature which again is normalized such that
TD=1 at the condensation puint. TD = TD(pv,T,g) is also
assumed to be independent of dropler size. Tt is important to
note that on any equilibrium path T=TD ,

TD = TB (2.9)

where, in the size independent limit, the saturation temperature
T is defined in terms of the local vapor-pressure by the in-
verse of the Clausius-Clapeyron law, 1i.¢.

-1

-1 -1
Ts = 1 + H ln(pv ) . (2.10)




The droplet production rate

."

J = 2(p,,Texp(-K 'B(p ,T)} . (2.11)

Here B 1is proportional to an activation energy. (lassical
theorisas predict that

B = B(p,1)(Ins) " ¥

(2.12)
where

s = p,/E, (2.13)

is the saturation ratio, The saturation pressure p, 1is de-
fined by the Clausius-(lapeyron law

= - 1..
P, exp{ H(T 1Y} . (2.14)
In (2.12) it is assumed that the term (ln ~s)'2 compietely

describes the singular behavior near s=1 . The variables are
normalized such that B(1,'," =]

4
3 ﬁll standard models (see «.g. Volmer, 1930) aAare af thic Core.
3 If neceassary, the analysis can be gernrralized to (.00 0ue o

dependence of B and I on g {see T Vi),

e g
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3. Initial growth
Since B is unbounded at the condensation point 1t ollows
that initially g s exponentially smail. The so'ution i
¢ determined from che frozen relations
“XI ”LY ,
" Y"' - v Y“ " & oL
Py ™ lf y 0y 1{ and g y-T‘(lm !r) (3.1
; where
C
p 0 )
Y 9 r s {(3.3)
Py
' This system is completed by the contirnuity equation (2.1). IT
the condensation point 1li:. Jdownstream of the throat the muss
flow is defined by its frozen value
Yri
-‘1"21‘4‘) ?(‘Y"l .
mr * UC vy \T:T .‘\t (3.3
where At is the throat area. (3.3) is also a valid firs
approximation when no appreciable condensation occurs upstream
of the throat. If, however, the supersaturated svate collapses
for X<Xy the mass flow is determined from local conlitions at
the appropriate sonic point,
" From (2.6) it appears that the initial growth ol the con-
v densate mass fraction is defined by

. :
g - A’(lrfcx.a)zfcenA(ﬁ)exvf-K Bo(E)]de

« [1 + O(g/K)] (3.4)

where the suffix f denotes evaluation from the frozen solution,
As K+0 this rugion of near-frozen flow can apparently exist

for a finite distarce downstream of the condensation point.
Equation (3.4) is the appropriate extension of (I1.3.1) and
holds even when the initial growth region is not confined to

the neighborhood of x=1 .
11
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Near the condensation point

B o b (3.3
(x-1)"
apart from aume constant factov., this timit war discussed in
o 1f the frozen solution persiats it ix aei A ffieule to
show Prom classical the vy (1.4.8) that
R ] :

B ~ T, (%.6)
a8 Tyv0 , wheve again o constunt facier is not included In
(3.6). The characteri. tic behavior of this tunction 18 swown
in figure 1. Only situations for whica Ry has a wingle

turning point, at say X*Xpi0 will be considored heve,

For XX e ¢ K30, the dntegral tn (3.4) is obviously
ot stcopest doscents typo. However, the cumulative oifocts of
the coupling between the rate and flow equutions can becuome
important upstrsam of Xotn ° In this case the coupling can
limit the droplev production and lead to a local turning point,
characterized by some point xex, , fov the activation term
B(pv.T) (see tig. 1). The analyvsis given in Il was concerned
with tlows for which x -1 . In this paper the analysis is

Xk
extended to situations for which the coupled turning point can
cecur at a finite distance downstream . ' the condensation point,

It i3 conveniont to distinguish between those flows tor which

this point lies upstream of Xiin and those for which it lies
close to Xuty Initially, the analysis is restricted to the
former case. Flowg in which X “Xy, ave discussed in §§7-9,

For «x«< the substitution

xmin

E = x - ks

can be used to show from (3.4), neglecting ths factor 0(g/K) ,
that

1?
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f provided that
i KVt s (X.8)

In (3. 7)

Rl L AP

1M
e I O [UWO RN TR C RS
ax oy ¢

S et e

It followa {rom (3.?{ that
N @ KRN0 OO R Sexp (KT )

S TURETE SR (3. 10)
(3.4) implies that this inlcial growth law will fail when

¥ R OK) (3. 10

\

Far sufficiontly Jarge values of A it appeavs trom (X.10)
that (3.11) will occur upstream of Xoin In this case 1t is
convenient to characterize this rvegion hy defining a point X

such that

QT e A e

i
-

R(x) eren b )
, . = TN T . ¢ - N = H »
-1 D(xk) 62K ﬂk“kAk(BkJ exp{-X uk} iUd1d)

i where nk - nf(xk) etc. As implied by the notation, this point
L will, in fact, corvespond to the local turning point discussed

earlier.

The criterion (3.12) may he of some practicul interest

! since it defines a critical onset point for the collapse of the
¥

] supersaturated state. Onset criterisa have been discussed

{

B

E

\

3

Z

i
}
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extonsively in whe litevature (Wegener (19069), Wogener and

Magk (19088)), 1t is of interest to vhsevrve that Qawatitach

. (1941), by means of qualitative a eouments, obtained a critevion

§ which {s similar tn ferm to (3,12), In addition to the exponential
2 factor, stntit(ak‘s‘reault included the term (%%)‘“ vA

aimilar term, Hﬁr v arwses in (M.12).

bl b o . Bt o——— > i o oo

j Strictly the point Xy defined by (3.12) is more appro-
priately veferved tu as v velative onret point for which the

; eritical value of y is measured with respect to the parameter
K . Conventional detfinitions for this point uaually corvesapond
to somo sbasulute value of the condensation fraculon or, at luast,
to dome practical weasule of the departure from a frogen state,
For noatle flows th' - depavture is often defined in terms of
atatic preasure measurements (see a.g. Wegenevr and Mack, 1968).

14
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1. The precuraar sone

| m—on 13 8

é

} Appropriate asymptotric expansions in the neighbarhood of

{ X Aep

! N

3 )

2 & 0 Kg(e)) » 0

i (4.1)
{ Tow TC KT ) Y

i

! ot¢,, where

!

{ - A 'Y 7
5 $ K (a-xk) . (4.2)
b

these aexpunaions ave compatible with the limiving behavior,
XXy of the initial growth law (3.10) and genervalite the
approach outlined in 11,84,

o -

o

Substitution into the conservatjon equations (2.1)-(2.3),
together with the equation of state (2.5), gives

-+

e 4 R

'l\ . g ‘
? - . \ T IVLANVES BETEN 9 BL_gt
(Nk-l)yk (v I)MkA1k¢n + (v 1)IMk ool Mkr?& ’
p
L R - . 2 . P p By
(Mk l)pk YMkAlk¢l + (y-1 yNk )Mk Tﬁ . ﬂ
. v 8 P(4.3)
M 1)) w - VAR INTA !
(Mk l)uk Alk°l {1-y Hk }Tk ’
2 P ] -1 -y B
(M -1)=' w - MIAL .+ {1-y TR Mt
k “7p, kK Ik K T* )
Similarly, it is not difficult to show that :
P ) (l-w ) u \ g :
2 Vi ) H . TR Y [ A 2 1 ‘
(My 1)6; YMA S, Y {F* LM -H [’Mk* w W (M lﬂ T, &
(4.4)
In (4.3) and (4.4)
f1 oA
e - {2 8)
x-xk

15
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, B L N
A and
%
“ » +
“k " HTk . (4.6)
Correspondingly, tha rate equation (2.6), using (2.7) and
‘ (3.11), reduces to
3 an 0‘
RS N ORI IR ORI (4.7)
\ -l
where
; B = B+ KB (8)+ ... (4.8)
!
! and
f (“”f) (4.9)
i ﬂ - - . [
| Tl
: From (4.3) and (4.4) it follows that
1 B, = - 8¢, *bg () (4.10)
i with
f MIA
, . kg)g[(,_l(%) . ( aa)]
4 a Y-IT Y({P (4.11)
\ M;“l “k Vs‘i)'vk
f and
£):) aB
b = b (T ) + b (p ) (4.12)
'I‘1 ﬂk vl v pvk ,
where
2 -1 -1.,2
] (y-13{M -y ™" -H M)
T 1
1 Tk(Mk'l)

. -1 . -1y
(y=1)Mp - IyML+ (-0 Jw tuu) (M- 1) 1)
v T o )
1 Ty (M- 1)

(=2

1
:
?
g
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In this section it is assumed that xk<xmtn which, since

B, has a minimum at Xpin * implies that (dur/dx)kﬁo or,

from (4.9)

a >0 . (4.14)
Further, for tho usual modols {(sec e.g. Volmer 1939)
B o«o. (4.15)
Py

Only flows which are supersonicJr at  x, will be considered in

this paper, From (4.11) to (4.15) it is then not difficult to

show that (Mk>1)

s ey e - .
TR0 7, e T DRI S D B s et .

b >0 . (4.1¢6)
é The substitution
{f‘ § = bg, , ¢ =ad (4.17)
% reduces (4.7) to
(4.18)

. - ) ~
gl¢sidb) = 7 f (¢-v) "exp{y-g(yih) }dy

&
N
3

g

Although the mass fraction is still small, O(K) , (4.18) implies

that the coupling between the conservation and rate equations.
The region is characterized by a marked in-

is now important.
crease in the droplet production factor and is equivalent to
In IT this region was close

.‘xo*ﬁ,ﬁ%"- g 8
Ha-CHE sk kG
B T

the precursor zone discussed in II.
to the condensation point but here it occurs at a finite distance

=

-
3 q,_‘:{?: e
PR

N

downstream of X, (=1)
The solution of (4.18) depends on the parameter

evei, the further transformation

b . How-

g S T Y

ey

Logat it oy

$With regpect to the frozen sound speed.

17
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¢» ¢ -1lnb (4.19)
ylelds

»

~ ) ¢ A A - a ~ .
gle) = % f (¢-4) ‘exp{¥-g (¥))di (4.20)

>

which is parameter free. (4.20) is identical with the corre-
sponding equation obtained in II,f4. Details of the solution
were given there. As ¢+» it was shown that

g-adt+adtradra o) S (4.2D)

where the error term iy, in fact, exponentially small. The
coefficients a_, are given in table 1 and arc defined by

B 7 % f 3C,C-W)37”exp{w-s(w)}dw . (4.22)

4, R, o,y By

0.1883 | 0.2220 1.0878 | 0.8566 |

A Y AVt S D UM e S { Vb Bt 20

Table 1. The coefl’ .nts a,
From (4.2) the width of the precursey gone s apparently 0(K) .
It is relevant to note from (4.!7) that an effective measure
of the width is Kka ' .

Droplet production is exponentixlly small downstream of
this region. The cubic growth predicted by (4.21) certainly can
not persist: this growth will ultimately be limited by a return
towards a saturated state. For the near equilibirum limit
discussed in IT it was shown that the final growth region was
governed by a weak condensation shock. The corresponding
analysis for the present limit is given below.

18
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5. Droplet growth

Before discussing the detailed structurc of the growth
region it is convenient to re-write the basic rate equation (2.6)
in an alternative form, Using (2.11) and the definition (3.12),
the integral equation (2.6) becomes

1y e 8% [*M{X,E1K) Z(E3K) ACE) - e
20xik) + gy MR EGIR A cxp i (aesk) -p 1 5.1)

where the implicit dependence on the ﬁhrameter K is now in-
cluded. In terms of a normalized radius

x L}
R(x;K) = fA 2(5iK) g5 | ‘ (5.2)
x X k . }
with
Q(x;K) = F(T,-T) (5.3)

(see (2.7)), (5.1) can be further written as

s 3
BOGK) = s 1 CDT G REGKITT LGK (5.4)

where

X .
[, (xiK) =~jl[R(s:K)1” Qiéiﬁl-éﬁfl exp{-K"" (B(£;K)-B,)}dg .(5.5)

Note that the growth of R is measured from

X = x,_ - Ka in b (5.6)

which corresponds to the displacement defined by the trans-
formation (4.19). The use of ik , rather than x_ , enables
the precursor solution to be applied directly to the evaluaticn
of the integrals Ir

Outside of the precursor zone the integrand in (5.5) is
exponentially small. From the precursor solution (§4) it is i

straightforward to show that for x>§:k
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L.(x;K) = I.(»K) (5.7)
neglecting exponentially small terms. Further

-Hence, from (5.4), x>§k

L J

3’expt3~§c$)1d§] [1+0(K)] . (5.8)

ST RIS AN gt S

VPN

. - _8_ e s hyTHL, o pnq3er '
B(K) = B riocka T IRGK] o (5.9)

_ where
-,':z;_ " ' ' ’ . ’ - r o1 -
N I . AL MCT SR (5.10)

E Using (5.8) and (4.22) it follows that

e e e A = b

s o A, = s [140(K)] . (5.11)

':, a' r
Q ‘ Direct inspection of the equafious suggests that the
3 precursor gxpansion fails when g=0(1) or, from §4, when

-ﬁ}A E x-ik - 0(K’1) . Consequently, appropriate independent and
E " dependent variables in the growth region are defined by .

y. . 2
E : x -x, = K°x

. f 2 (5.12)
7 R(x;K) = K7 R(x;K)

with

. g(x;K) = B0GK) »  T(xK) = T(x:K) (5.13)

etc, Substitution in (5.9) gives

BxiK) = Ba,a’RP(GK) + 2,82k FROGK) + a,aK PROGK) + 0(K)]
 (5.14)
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where

X.
R(xiK) = f Q(s;K)ds (5.15)

Q

and

206K = ala(k) . (5.16)

Obviously, from (5.15), the integral form of the rate
equation is now equivalent to the first order differential

- - relation
aR . oz
; Ix Q(xsK) (5.17)
: with
R(O;K) = 0 . (5.18)

The function & does, of course, depend implicitly on g and
hence, from (5.14), on R . This relationship is defined by
the local solution of the conservation relations together with

T AT SRS
TN A X VA 1 3

the equation of state.

R e

Within the present growth region the dependent variables

have asymptotic expansions of the form

- - 1, .
20GK) = 2,00 * K, 00 ¢+ ... (5.19)

However, it follows frgm (5.12) that the effoct of the

local area variation is O(K“a) and that the conservation rel?tions
reduce to the standard one-dimensional form even if terms O(K’ﬁ)
are included (see below, §6). Correspondingly, it is appropriate

to retain terms O(K'ﬁ) in (5.14).

etc.

It is convenient to introduce the transformation
S(x;K) = b’Lﬁ' “ R(x;K) + 1,71 a“xaﬁ) (5.20)
X3 K) daa [R(x; 3'3 82 3 ' -
where

- 21




' Bl

:
g-_
£

&
:
E_

¢
:
]
3

B R R T

X = b'l/’aa:/’ X .
(5.14) now becomes
BRK) = SUGK) ¢ oK)
with
E(:K) = gOGK)  etc.
In addition, from (5.17)

a3
dx

= Q(X:K)

and from (5.18), S satisfies the initial condition

1,4

1 -
3 a 0.2253(kb7 Y

300;K) = %-aza;z/’(!(b")

i,
correct to 0(K'?) .
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6. C(Condensation shocks

Substitution of the expansion
T(x;K) = TOGK) ,  g(x3K) = g(X;K)  etc. (6.1)

into the conservation relations gz.l) to (2.3) shows that within
the growth zone, correct to O(K'G) ,

pu = p u.
p + BU* = p, + o ul (6.2)
.oy 1l ~; pa. 1 2
c T+ 5u® - g = ¢ T, + u = ¢ T
Po 2 P, k 7 Tk po o

where the right hand sides follow from matching with the pre-
cursor iflution. It was noted in &5 that the local area variation
is 0(K ™) and that the one dimensional relations (6.2) correspond
to the usual description of a condensation shock (Wegener and

Mack, 1958).

in addition, the cquation of state (2.5) becomes

1

p = o(l-H '9)T . (6.3)

‘Yhis relation is often repliced by the approximation (iH-w)
p = oT . (6.4)

Equations (6.2) and (6.4) are equivalent to thosc governiang the
one-dinensional flow of a perfect gas with heat addition (Shapiro,
1958, Wegener and Mack, 1958). However, neglect of the term
O(H'l) in (6.3) can lead to significant errors at sufficiently
high Mach numbers (see below), It will be rctained in the

present discussion,

The solution of the system (6.2) and (6.3) can be written

23
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(6.5)

where the stagnation temperature

T, = (1 + iléll M;)Tk = 1 e Ld) e (6.6)

and the suffix C corresponds to conditions at the condensation
point. Further

é ; 1 + 201.U )
= YM2(1-2 ) (6.7)
Py L
and
T B U oy g0 ‘
= - - {(1-8) . (0.8}
T% P, Uy E

In (6.5) the function ¢ is defined by

(hof) = alfo) B -l B o) h)]

(6.9)
with
T
H - A 0
C!(To ,Y) y + 1 ;TT 1 ’ (6.10)
H To) To
CZ(TQ'Y) = (2 + Yy n/a (6.11)
and Ty
ot = o () - o1

Consequently, if £ represents any of the dependent variubles
etc. then, with the exception ¢f the vapor pressure,

- . H ; -
{ = f'(%q,Mk,To,y) . (6.13)

From (2.4) (I,(3.2)) the vapor pie:sure will depend on the

u/ub
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Using these relations, the sulution of (5.24) can be written

8
S epD = ( g (6.14)
Yo, (8)
4
where
Q(x;K) = nd(S) (6.18)

R
neglecting terms O(K’ﬁ) . The dependence on the puarameters

Mk etc. is to be understood, Using (5.25) it can be shown that

v - 9%
D= g aga;dket) Y, (0416)
Some actual calculations of the shock structure for a

conventional model are shown in figure 2 It is assumed that
TD=Ts (Oswatitsch, 1942), w1l (pure vapor), and that

Faoe ¥ (6.17)
u v *

(Wegener and Mack, 1958)., In this case, including the parameter

dependence,
Vs V(EMHT YD) (b.18)

For the calculations shown in figure 2 the downstream limit of
the shock solution corresponds to a saturated state. It might
appear from the rate equation that this asymptotic limit will
always be defined by an equilibrium state with

Sadiler - < Lh
et B g

T = TD = T (6.19)

8

(see (2.9)). However, from (6,5), this saturated limit, at

which geg_ , <an be achieved only if

‘;?!_#1;;) COE S ot e
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for all g<g, + It should be stressed that g, corveaponds to
a local equilibrium atate} it is not defined by the globul
sojution diacuised in {,V\y,

It 0«0 at some g+<§, the flow is sald vo he choked.
It is atraightforward to verify from the whuck relations that
t.s flow attains sonic apeed at this puint, wheve the appropriata
sound speed ia defined by

and the suttixes denute evaluation {rom an isentvopic {rosen
state,

Although it ls important t¢ understand the conditions uundevr
which choking will occur upstream of the equilibrium state,
surprisingly little analytical work & peais to have heen done
on this problem, In most standard treatments the classical
shock relations (Hs=) wure used to obtain an upper hound on
the mass fraction (heat addition) indepondent of the equilibrium
constraint., It is shown in appendix J that a local saturated
equilibrium state is always attalned upstveam ot choking If

T, > Lxgil (v.22)
or, equivalently,

MQ > 1. (6.,23)

Choking is possibie only if Mucl* or

.Y.‘,‘;}_- >T, > 1, (6.24)

}In the presant analyala Mk>l } no restriction i placed on MC R

26
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This criterion s appavontly known experimentally (sev o,g, Pouring,
1048) but it daes not appear to have been previoualy Jdeduced by

Gnulytical avguments,
It ahould he stressed that (6,24) 13 & necesaary rvathev

than a sufficlient cviterion, An approximate eatimate of the
choking barrier is deduced in appendix & under the awsumption

that
Rl aawd) <

It is ahown there that choking will occur upatream of any
adturated stute if

1-M?
pvaser IR IURFTRIN u )y » 0 . (6,28)
(M - 1)¢
where
¢ (-w)
20v-naurg S e e 2ol
£ % e . (6.20)
2(ys D iy-11Q?
and
Q » 1 - Yy ﬁ >0 . (6,27

More detailed numerical calculations are presented in
figures 3-5, For given H and vy these figures show the locus

of the choking and equilibrium points in the (g,T) plane for
The numerical results confirm that choklag is

a pure vapor,
-1) sufficiently small,

possible anly for M0<l and ('Mk

For large H , the shock relations simplify considerably.

In particular

C = (y*1) § ,  Hew (6.28)
[ ]

and the approximate choking criterion (6.25) reduces to

27
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Mt yia

However, 1t i1 easily seen from (6.0)-(6.12) that difficultiea
Jo arise with the large W approximation when T, = O(H)
\ (No.Mkbal) .

1t should alsy be noted that for the finite H analysis
given here the choking condition 0=0 way have more than one
root, In fact, if choking occurs, which certainly requires that
¢,>0%, 1t follows that the cubic (6.20) has two positive roots
for the limiting value of the maws fraction. The analysis pre-
sentod ahove considers only the smaller of these two roots, In-
dependently of the saturation constraint, which precludes either
root fov Mt>l , 1t is not c¢lear whother the larger root corre-
sponds to any real physical situation,

¥;;te that for Mk sufficliently large C, <C .
28
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7. Initie] growsh Ixgrx,l <<
In the preceding analys.s it was asaumed that
k™MBrea)] > (7. 1)

(ve0 (3.8)). If n;-o at  XMX oL (7.1) can be replaced by
0> (xk-xmin) = 0(1) . | (7.2)

As X *Xpyy v OT MOTO precisely when xk-xmin-O(K*) » &n alterna-
tive approazh is required. The froren turning point and the
actual coupled turning point are now close together and it is
convenient to introduce the variable

g e K T xexg,) (7.3)

In terms of ¢ the initlal growth law (3.4), neglecting
the error tarm 0(g/K), becomes

. ¢ .
g - M'K'a’A exp(-K™'B) [ (c-r)’expl-%ngrzldr

-

¢ [1+0(KY)] (7.4)

whore

B =B {x_, ) etc. (7.5)

m Y min

Corresponding to the definition (3.12) it is appropriate to
define

- tya v}
Dm A Knmthmexp( K Bm) . (7.6)

" For the analysis discussed earlier, with B'=0(1) » D>>1 . The

criterion (3.12) implies that when B'-O(K ) , m-O(l) . Sub-
stitution of (7.6) in (7.4) gives

c 3 1:'2-
g ~ KDm f °°(c-t) exp[-mer Jdr . (7.7)
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It is apparent that (7.7) is not valid for finite ¢ when |
D,#0(1) ; the orror term 0(g/K) s then impcrtant, This limit ;
is discussed below in §8,

It should be stressed that the present paper is concerned
with the double limit A+s , X~0 such that X, "10(1) . At
fixed values of X the collapse point moves downstream,and the
parameter ' D, decreases as ) decreases. The analysis for
Dm-o(l) is discusased in §9.
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8. The droplet aﬁd growth zones, Dm-O(l)

The result (7.7) describes only the initial growth of the
condensation fraction (g+-=) . For finite values of ¢ ‘the

correct expansion is

g(x;K) = g(ziK) = Kgp(g) + ...
| (8.1)

T(x;K) = T(E:K) = T+ KT, (5) + KT, (%) + ...

etc, It is easily shown that the terms‘ O(Kk) ~are defined by
the frozen solution: any departure from the frozen state is

“associated with the terms 0(K) . Using the conservation rela-

tions (§2), it can be shown that
M2-1)T, = FME-DTyg? + (-1 ME-y -HTME)g, (8.2)

with similar relations for the remaining dependent variables
(see (4.3)). Substitution in the rate equation (2.6) gives

g
g9,(g) = Dm f_w(c-r)’exp[-%B;TZ-bgz(T)]dt . (8.3)

The transformation

g = bg, , (23") 4 (8.4)
reduces (8.3) to
g(Ev) = v fcwci-%)’expt-?’-a(?;v)ld% (8.5)
where
v = 4D_b(BM) " . (8.6)

(8.5) is the appropriate extension of (4.10) and governs the
droplet production zone. The simplicity in form of this equation
should again be noted, cthough, in contrast with (4.10), (8.5)
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does depend on a single parameter v ,

Numerical solutions of (EQS) were obtained for various v .
The droplet production term

J(@iv) = expl-£2-g(Ziv)} (8.7)

is shown in figure 6 and_the normalized drbplet nuhbér density

~

o A A i A = =

A A C,“-A _'A,\- . - .
N(giv) = f J(tiv)dr . ‘ . (8.8)

is given in figure 7. In addition, the asymptotic level ﬁ(w;v) ,
which is proportional to the total number of droplets produced,
is displayed in figure 8. Figure 9 shows the solution for the

P

mass fraction ~§ .

The asymptotic growth, ¢+~ , of the mass fraction is again
governed by a cubic law
+ o(1) (8.9)

q = £3 « +
g ha GaC " v 0.0

where
a (v) = C.v f (-8)3 Texp[-82-§(£;v) 1dE . (8.10)

These coefficients are shown in figure 10. Note, in particular
that a,(v) = vl (=;v) .

As in §5,it follows that this precursor expansion will fail
when g-O(l)l. The asymptotic law (8.9) implies that this occurs
when Z=0(K “®) or, from (7.3),

X - X a O(KL%) . (8.11)

min

b
It is easily shown, neglecting terms 0(K”®) , that the dominant
approximation within this growth zone in again governed by the
shock relations discussed in §6. However, the error term due to
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the area variation is now O(K'i) ,» 8ignificantly larger than
the contribution 0(K™?Y) obtained earlier in §§5 and 6 for

xk-xmin finite (<0) . )
Similar results to those outiined in §6 can be nhtnined
for the shock structure. By introducing the independent variable

Jl, L. . . : A
n o= b Aalden K (xox ) (8.12)

the rate equation, within the groﬁth zone, becomes,

2. (8) . |
-4 -d ©(8.13)

n

: . . by
neglecting terms O0(K”®) . Here

g = 8% E (8.14)
and nd(s) denotes evaluation from the shock solution. Matching
with the precursor solution implies that

S |
n o= f T (8.15)
0 Qd(b)
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.. It was. noted above thac, for fiqu~ K., the*paraﬁéter -ﬂﬁ

- decreases as 1\ decreases. Correspondingly, the collapse point

moves furthér downistream. It is not difficult to show that the

behavior near X4, 15 described by (7.7) with an error OCKD;) ;

. the error term 0(g/K) in (3.4) does not ‘play a significant

role for D = o(1) . Droplet production is governed completely
by the frozen.solution. The validity of (7.7) is actually limited
either by droplet growth or by the local area increase.’

(7.7) will éerfainly be inappropriate when g = 0(1) , or

-1 ' . o 3
g = OCKDm) 8 (9.1) |
iﬁgwhich case
- = 0(KD™ ) | (9.2)
x Xnin ) n ) '
Consequently if
-2
kKD, " = o(1) (9.3)

the local area variation will not be important within this region
and the solution is again gOVerne§ byxthe shock relations., In
this case the shock width is O(K’%D;‘ﬁ) and the error term is
even greater than that obtained in §8 for Dm=0(1) .

P

If KD;‘ is not small, (7.7) is limited, at least in part,
by the local area increase: the shock relations do not govern the
collapse of the supersaturated state., Further, it does not follow
that the flow will return to a saturated state. Since droplet

. prodhction effectively terminates upstream of che growth region,

and is governed by the frozen solution, it can be shown that the
rate equation will reduce to the simpler form

X
%& . (m” ) Dm% (9.4)
m m
34
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with g=0. at x=x_, . For DK™ = 0(1) the growth law (9.4)
is strongly coupled with the conservation relations and the

‘effect of the area variation can not be ignored.
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Appendix 1. The choking condition

From the supersonic branch of the shock relations it is
not difficult to show that

at
art . o Al.1
a3 ( )
upstream of choking. The initial conditions considered here
are such that
1

~ -1 - o
Ts = (1+H "1In pv) > T (A1.2)

-~

[

and >0 . It follows that T increases monotonically
through the shock. Hence, if it can be established that

]

Tr > Tr, (Al.3)

where # variables are evaluated at the choking point, at
least one equilibrium point (T=TD-TB) must have been attained
upstream of choking.

The shock relations imply that

= zr, (YM2+1)2 [1+(y-1)&"] AL &)
Toenmzpe G -1 (1 (GpE 12 0-F )
and

12T, ;IT YM +1 1 V%T
- T (o
[14-(7-1)&.} [1-u ;o E’]

. 2 . (A1.5)

EERIES

For M;>1 it is straightforward to establish that

T

preceding page blank .
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[1+(r-DE']

T* > Eg% 15 = Tr (A1.6)
ARNTTI =Y STIE )

and similarly, from (Al.5)

=y
~ 2T \7~ ' .
pr < (VTT) [1 * (y-1)ﬁf] - pgu : (A1.7)
Obviously, using (Al1.2), if
Ta > [1+H 'In(r )77 ~ (AL.8)
u

the inequality (Al.3) will certainly hold. It is shown below
that (Al1.8) is valid irf

LI 1

FI-) . (A1.9)
In this case

T; > 1 (A1.10)

and (A1.8) follows immediately if p* <1 . For p* >1 , a little
more care is required. (Al.8) is equ%valent to u

exp[H(1-1 ) > pr . (A1.11)
i v,

Using (Al1.6) and (Al1.7) it is possible to re-write (Al.11l) as

WoW, > 1 (A1.12)
vhere -y
W, = (é;*)y'lexp{ﬂ(1-}§%)] (A1.13)
and
W, = [1~(y-1)c]"exp[ui%§%lf(s)] (A1.14)
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with
on
§ = ﬁ (A1.15)

and

f(5) = (XZ'Y"'Z)(Y*I)&.'CY'I)(Y+3)62+(Y'1)263 >0 . (A1.16)
(v+1)2[1+(vy-1)6]

In order to establish (A1.12) ix is important to note from
the shock relations that choking can occur only if ¢,>0 or
2 2T
Yo-1 0
Y > T (A1.17)
If (A1.17) does not hold then the asymptotic limit of the shock
solution certainly corresponds to a saturated statc. However,
for C,>0 it is seen that
7 1
2T, \Y~ 2T
0
LN (VTT) exP[§¥I(§T% '1X] > 1 (A1.18)

provided that (A1.9) is val:id. Similarly

1+;%Tf(5)

. -1 .
W, > [1+(y-1)6] exp[7¥rf(a)} e s v (A1.19)
Using (A1.16) it is now straightforward to show that

W, >1. (A1.20)

(A1.18) and (A1.20) establish (A1.12) subject to (Al.9). Con-
sequently, the asymptotic limit of the shock solution will corre-
spond to a saturated state provided that T, ® Ll%ll— or,
equivalently (see 6.9),

M > 1. (Al.21)
C

Conversely, it is necessary, though not sufficient, that Mcfl
for choking to occur.
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Appendix 2. An agproxlmaga choking critorion

The condition M_<1 ostablished in appendix 1 is a necea-
sary rathur than & sufficlent condition for choked flow. Numer-
ical calculations (§6) indicate that choking takes place only
if M.-1 is sufficiently small. An approximate edtimate of the
actual choking barrier is given here in the limit when beth
MR(>1) and Mc(<1) are close to unity.

It is convenient to intruduce small parametors c and &
such that

T, Lx;.l_). (1-¢) (A2.1)
and

SR
Mg - 1= (A2.2)

Note that (A2.1) is equivalent to

c . (H)(x-mg) : (A2.3)

In this limit the amount of heat required to choke the flow 1ls
also small and it follows from the shock relations that at
choking g* = 0(A%) . Although not immediately upparent, it
also transpires that at choking e = 0(A%)

Expansion of the shock relations shows that at choking

- ? - 2
T = 1 - g + -(-:Y"f—l')";‘ + [I*LY]—.,.}I)‘ J\S + O(Aa) (A2.4)

and

N ) ’ A?
L R

. [Y(Y'l) u,(1-wg)
2(y+1)?

- AR AT (¢
Y"'l uiwo ]6 + O(A ) (Alcusl)

where

Preceding page blank § = BMH . (A2.6)
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Further
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It alse follows from ¢ 40} that

e = m :-‘iw)a(l-ﬁr‘é)qd' ' (A2 W)

Choking will oceur upatream of the satuvaticn point if

2 s fo (A2.9)
OF, uding the preceding veiationa,
" 1eM? "\
%’“«” i’* " m.‘.\)g‘f > HALY by ey 20 (A2 20)

whore I {is definud in (0,24),
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Pig. 1.

Frozen and local behavior of the
activation func¢tion B .

44

€ e e e

Y . T

[ i S

© rve s S mepptis e w




T.‘L‘, N‘-l. aemmeoe
1.6 7'1-40 H".ZO. . Mk'9

[ -1}

0.8

0.4

PGS ILTIAS S BT e e wer e

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-

B

Fig. 2. Particular examples for the shock structure.

2P

45

i

N AR Ak L

TR
s




e S SARGE e AR et 1 T 1 e o T e IR S N e e L b e T B e S € DO A A O LMANIMNS g8 L MG Gr s b A Dyl e et . P e e - cams .
1

H

H

i

Kl

-t 0=3 uo 2ieurdtrao syijed yooys - xz [Teus ATIU3ISTIINns

hom mﬁnammom ST mcﬁxo:u S AN ®1 103 uot3injos ydoys ayy g -8rg

St e e 1 } .m_ S 0 0
; e O e

46

L4 : suty Mﬁwxaﬁu-l' $°1
JTUIT UOTJedN]EeS TEI0T cmumcmmms

Yied YOO0YS e e

0Z=H - ‘¢°1=A
/ IR ORI 35 21

0°¢

et e e . U




. AU U S S : e e e e v ——— b A ? T TR e 2 BRI ST R AR T T

. . : - . cum
:ooumcﬂmﬁuOmcumaxuonm.:wmﬂhoo:uumhﬁ:ouuumhouammo>u=u

w uctieanies pue Jurjoyd oyp °* ﬁmr = -h J03 uoIinjos Ydoys 3ayly ‘¢ 314
S°1 I A L $°0 0
~
; -
m t
3

AUTT BUTHOYD an commme o
_ " ITWIT UOTIIRINIES [EI07T cmmemmmmen
i Y4 yied jooyS mem e

PR P, TV

S



— e et e e N S Y e Y A O s S M s D s apay e w L R ).. i‘.h :...

R UL
wrecilia 47
i

S ek e

. * 0=3 uo
| | 1 »n pouTyap st oury Buijoyd
Y3 wo uuﬁoﬁxﬁumuwcﬁ Yy ..~m>AA °L 10j uorInios ydoys syr -g -84

- -

23eutdrio syied yooys - (1<) [V

§°T

e S 50 2 a

R S

48

o8

0Z=H. : pe P Onh.m.ﬂ NGMMOJU L X
# ITUIT uoirjeanies 12307 e

4ied YOOUS wer m e e

ET

LI TPy N WAV U 31 SIS

=0 “s 12’y




*9uoz 1osandaid .uowwwwﬁa Y3 ur 33eI ao:uswoum 131doap ayyr -9 .m.ﬁm

i s s et A I G N S PR

R N R S

R

§z-0

v'o

(at2)g

49°0

(2]
-




BT

B e e

va(,01

I LN S s gt ot

T

B RE RIS et}

e AN AR LTI e~

N

TR WP e

The number of droplets in the precursor zone.

Fig. 7.

50




Pig. 6.

K{=;v)

The asymptotic droplet number as a function
of the paranster v .
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